China Custom Metal Hose Safety Coupling Is Used for Petrochemical High-Pressure Fluid Pipeline

Product Description

Product Description

Material

304/316/316L/CF3/CF8/CF8M/1.4301/1.4408/1.4404/SCH22/SCS13/SCS14/17-4PH/WCB/GS45/HK

Standard

DIN / JIS / ASTM / ASME / BS / GB / ISO

Thread Ending NPT / BSPT / BSP / DIN / ISO 
Product weight 0.005kg~45kg
Dimensional tolerance Casting ISO8062 CT5~CT7 ; Machining ISO2768
Manufacturing process Precision casting, investment casting, precision machining NC/CNC

Application

Stainless Steel Pipe System, water system, petrolum system etc.Medicine, food, chemical industry, etc

Type Tee, elbow, union, pair wire, quick connector, clamp connector, valve, valve body,
pump, impeller, mechanical parts, food machinery, stainless steel customized parts

Service

OEM 

Delivery

By Sea / By Air / By Express

Shipping port ZheJiang / QingDao / ZheJiang /BeiJin 

Packing

Carton Box / Plywood Case / Special Packaging CHINAMFG Customer Requirements

Supply cycle Samples are 25-35 days; the order can be adjusted according to the situation for 55 days of normal manufacturing period.

Payment Terms

100% TT / 30%TT in advance, balance 70% before delivery

Our advantage We have more than 15 years of manufacturing management experience;
we have professional technical engineers in investment casting, machining and quality inspection;
we have long-term stable and continuous optimization of product quality and supply cycle management plHangZhou.

Product Show


FAQ
1,What are your strengths?
We have foundry workshop and machining workshop; We have an independent quality inspection team and production process management team; We can provide you with the drawing mapping, mold or product design and manufacturing, as well as the inspection and monitoring management of your products in China;
2,When can I get the price?
The quotation shall provide detailed and complete information within 24 hours after receiving the inquiry. And solutions.
3,How long can you finish the sample?
It is usually completed in 3-5 weeks; Different products adjust the cycle.
4,How long can you finish the order?
After receiving the sample confirmation information, the casting time is usually 6-7 weeks; The finished product was added for another 2-3 weeks;

We welcome your inquiry and cooperation!
HangZhou CHINAMFG Electric Technology Co., Ltd

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Key Parameters in Designing a Fluid Coupling System

Designing a fluid coupling system requires careful consideration of various parameters to ensure optimal performance and efficiency. Here are the key parameters to take into account:

  • Power Rating: Determine the power requirements of the connected equipment to select a fluid coupling with an appropriate power rating. Undersized couplings may lead to overheating and premature wear, while oversized couplings can result in energy losses.
  • Input and Output Speeds: Consider the rotational speeds of the input and output shafts to ensure the fluid coupling can accommodate the desired speed range without slipping or exceeding its limitations.
  • Torque Capacity: Calculate the maximum torque expected in the system and choose a fluid coupling with a torque capacity that exceeds this value to handle occasional overloads and prevent damage.
  • Fluid Viscosity: The viscosity of the fluid inside the coupling affects its torque transmission capabilities. Select a fluid viscosity suitable for the application and operating conditions.
  • Start-Up and Load Conditions: Analyze the start-up torque and load variations during operation. The fluid coupling should be capable of handling these conditions without excessive slip or stress on the drivetrain.
  • Environmental Factors: Consider the ambient temperature, humidity, and potential exposure to contaminants. Ensure the fluid coupling’s materials and sealing mechanisms can withstand the environmental conditions.
  • Size and Weight: Optimize the size and weight of the fluid coupling to minimize space requirements and facilitate installation and maintenance.
  • Torsional Resonance: Evaluate torsional resonances in the system and select a fluid coupling with appropriate damping characteristics to mitigate vibrations.
  • Overload Protection: Determine if overload protection features, such as slip or torque limiting, are necessary to safeguard the connected equipment from damage.
  • Compatibility: Ensure the fluid coupling is compatible with the specific application, including the type of driven equipment, its mechanical characteristics, and any other interrelated components in the drivetrain.
  • Operational Costs: Consider the long-term operational costs, maintenance requirements, and efficiency of the fluid coupling to optimize the overall lifecycle cost of the system.
  • Safety Standards: Adhere to relevant safety standards and regulations in the design and installation of the fluid coupling system to ensure safe and reliable operation.

By carefully evaluating these parameters and selecting a fluid coupling that aligns with the specific requirements of the application, engineers can design a reliable and efficient fluid coupling system for various industrial and power transmission applications.

fluid coupling

Real-World Case Studies: Improved Performance with Fluid Couplings

Fluid couplings have been widely adopted in various industries, and numerous real-world case studies demonstrate their positive impact on performance and efficiency. Here are a few examples:

Case Study 1: Mining Conveyor System

In a large mining operation, a conveyor system used to transport heavy loads of ore experienced frequent starts and stops due to fluctuating material supply. The abrupt starting and stopping led to significant wear and tear on the conveyor components, causing frequent breakdowns and maintenance downtime.

After installing fluid couplings at critical points in the conveyor system, the soft start and stop capability of the fluid couplings significantly reduced the mechanical stress during operation. This led to a smoother material flow, reduced conveyor wear, and extended equipment life. Additionally, the fluid couplings’ overload protection feature prevented damage to the conveyor during peak loads, ensuring uninterrupted production.

Case Study 2: Marine Propulsion System

In a marine vessel equipped with traditional direct drive systems, the crew faced challenges in maneuvering the ship efficiently. The fixed propeller arrangement made it challenging to control the vessel’s speed and direction accurately, leading to increased fuel consumption and decreased maneuverability.

By retrofitting the vessel’s propulsion system with fluid couplings, the ship’s performance improved significantly. The fluid couplings allowed for flexible and smooth speed control, enabling precise maneuvering and reduced fuel consumption. The ability to adjust the load on the propeller enhanced the vessel’s overall efficiency, resulting in reduced operating costs and improved environmental sustainability.

Case Study 3: Industrial Pumping Station

In an industrial pumping station, the constant starting and stopping of the pumps caused water hammer and pressure surges within the pipeline network. The sudden hydraulic shocks led to pipe bursts, valve failures, and increased energy consumption.

After implementing fluid couplings in the pump drive systems, the pumps could be softly started and stopped. The fluid couplings’ torque control capabilities ensured a gradual increase in pump speed, eliminating water hammer and pressure surges. As a result, the pumping station’s reliability improved, maintenance costs decreased, and the energy consumption reduced due to smoother pump operations.

These case studies demonstrate the positive effects of using fluid couplings in various applications. They highlight how fluid couplings contribute to improved performance, reduced mechanical stress, enhanced control, and cost savings in industrial machinery and systems.

“`fluid coupling

Comparison: Fluid Coupling vs. Torque Converter

Fluid couplings and torque converters are both hydrodynamic devices used in automotive and industrial applications to transmit power between an engine and a driven load. While they share some similarities, they also have distinct differences:

  • Function: The primary function of both fluid couplings and torque converters is to transmit rotational power from the engine to the transmission or driven load. They allow for smooth power transmission and provide a degree of isolation between the engine and the load.
  • Construction: Both devices consist of an impeller, a turbine, and a housing filled with hydraulic fluid (usually oil). The impeller is connected to the engine’s crankshaft, the turbine to the transmission/input shaft, and the housing is shared between the two.
  • Torque Transmission: In a fluid coupling, the power is transmitted purely through hydrodynamic principles. The impeller accelerates the fluid, which then drives the turbine. However, there is no torque multiplication, and the output speed is always slightly less than the input speed. On the other hand, a torque converter can provide torque multiplication due to its stator, which redirects the fluid flow and increases the torque transmitted to the turbine.
  • Lock-up Clutch: Some torque converters have a lock-up clutch that can mechanically connect the impeller and the turbine at higher speeds. This effectively eliminates the slip between the two elements and increases overall efficiency, similar to the operation of a fluid coupling at higher speeds.
  • Automotive Use: Torque converters are commonly used in automatic transmissions in vehicles, while fluid couplings were more prevalent in older manual transmissions. However, modern manual transmissions generally use clutch systems instead of fluid couplings.
  • Efficiency: Fluid couplings are generally more efficient than torque converters, especially at higher speeds. Torque converters can experience efficiency losses due to fluid slippage and the operation of the stator.
  • Applications: Fluid couplings find applications in various industrial machinery, such as conveyors, pumps, and crushers, where the priority is smooth power transmission and overload protection. Torque converters are primarily used in vehicles, offering the benefit of automatic gear shifting and torque multiplication during acceleration.

Overall, both fluid couplings and torque converters play essential roles in power transmission, but their specific design and application characteristics determine their suitability for different use cases.

China Custom Metal Hose Safety Coupling Is Used for Petrochemical High-Pressure Fluid Pipeline  China Custom Metal Hose Safety Coupling Is Used for Petrochemical High-Pressure Fluid Pipeline
editor by CX 2024-02-22