China factory Pneumatic Accessories Chs Ss Engineered Fluid Transfer Couplings

Product Description

Pneumatic Accessories CHS SS Engineered Fluid Transfer Couplings
 

Type C – Spiral  camlock with male adapter  X Spiral hose shank

Type E – Spiral camlock are produced according to A-A-59236( Mil-C-2787) , Spirsl hose shank For Composite Hose Coupling, Spiral Camlock fittings provides a simple and reliable way to connect and disconnect hoses, which is more efficient and economical than threaded or flanged joints. Camlock fittings is suitable for transporting heavy oil, kerosene, water, hydraulic oil, oil and fuel, or acid and alkaline chemicals, with the advantages of quick connection and flexible disassembly.

  • Name  Type C – Spiral camlock with male adapter  X Spiral hose shank
    Body Material:  Aluminum/ Stainless steel
    Size: From 3/4” to 4”
    MOQ: 50 PCS
    Certificates:  CE, ISO9001:2015
    Application: Water lines and irrigation in industry, construction agriculture and horticulture.
    Connection:  Male thread
    Arm Material:  Stainless steel and brass
    Working pressure: 50-250 CHINAMFG (It depends on the size and temperature)
    Manufacture method:  Gravity casting/ Precision casting
    Thread:  BSP, BSPT, NPT, G(ISO228.1), and R(DIN2999).

Camlock fittings Feature:

  • Light, flexible and interchangeable
  • To connect and disconnect without tool
  • Economical

The application of camlock fitting in variety industries.

  • Industry: Oil, mine, municipal, construction, chemical and agriculture.
  • Application: hydraulic oil, coolant, gasoline and petroleum products, fuel delivery,  wastewater, chemical transportation and storage etc.

 

Our Advantage

We are experienced as we have been in this industry as a manufacturer for more than 10 years. Both quality and service are highly guaranteed. Absolutely prompt delivery. We can produce according to specific drawings from customers. Welcome OEM/ODM project. Strict control on quality. High efficient and well-trained sales service team.  ISO9001, CE, and SGS certified.

FAQ

1. Q: Are you a producer or trading company?
    A: We are an experienced manufacturer. We own a production line and kinds of machines.  

2. Q: Can you make our specific logo on the part?
    A: Yes please provide me your logo and we will make your logo on the part.

3. Q: Can you manufacture products according to my drawings?
   A: Yes we can manufacture according to the client’s drawings if drawings or samples are available. We are experienced               enough to make new tools.

4. Q: Can I get some samples?
    A: We are honored to offer you our samples. Normally it is for free like 3-5 pcs. It is charged if the samples are more than 5        pcs. Clients bear the freight cost.

5. Q: How many days do you need to finish an order?
    A: Normally it takes about 30 days to finish the order. It takes more time around CHINAMFG season, or if the order involves many        kinds of different products.  

6. Q: What kind of rubber washer do you apply to Camlock couplings?
     A: Normally we use an NBR gasket.

contact-info.html /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

fluid coupling

Can you explain the Concept of Slip in a Fluid Coupling?

In a fluid coupling, slip refers to the relative speed difference between the impeller and the runner. When the impeller, which is connected to the driving shaft, rotates, it induces the flow of hydraulic fluid inside the coupling. This fluid flow in turn drives the rotation of the runner, which is connected to the driven shaft.

However, due to the operating principle of fluid couplings, there is always a certain amount of slip between the impeller and the runner. This slip occurs because the fluid coupling needs to allow for a small speed difference in order to transmit torque smoothly.

During startup or under heavy load conditions, the impeller’s rotational speed may be slightly higher than the runner’s rotational speed. This speed difference causes the hydraulic fluid to circulate between the impeller and the runner, generating hydrodynamic forces that transmit torque from the driving shaft to the driven shaft.

Slip is an inherent and controlled characteristic of fluid couplings, and it is essential for their smooth operation. However, excessive slip can lead to energy losses and reduced efficiency. Therefore, fluid couplings are designed to have an optimal slip value for specific applications, balancing the need for torque transmission and energy efficiency.

fluid coupling

Role of Fluid Coupling in Reducing Mechanical Stress on Connected Equipment

A fluid coupling is a mechanical device used to transmit power between two shafts without direct physical contact. It plays a crucial role in reducing mechanical stress on connected equipment, offering several benefits in various industrial applications. Here’s how a fluid coupling achieves this:

  • Smooth Power Transmission: Fluid couplings use hydraulic principles to transmit torque. When the input shaft (driving shaft) rotates, it imparts motion to the fluid inside the coupling. The fluid transmits torque to the output shaft (driven shaft) through the hydraulic coupling, resulting in smooth and gradual power transmission. This eliminates sudden jerks and mechanical shocks that could otherwise lead to increased stress on connected equipment.
  • Damping Effect: Fluid couplings act as a damping element, absorbing vibrations and torsional oscillations from the driving shaft. This damping effect helps reduce mechanical stress on connected equipment by mitigating the impact of sudden load changes and torsional vibrations that may occur during start-ups, shut-downs, or varying operating conditions.
  • Torque Limiting: In high-load situations, a fluid coupling can provide torque limiting capabilities. When the load exceeds a certain threshold, the fluid coupling slips, preventing excessive torque from reaching the driven shaft. This feature acts as a protective mechanism, preventing overloading and mechanical stress on both the coupling and connected equipment.
  • Shock Absorption: In applications where shock loads or overloads are common, a fluid coupling can absorb and dampen the impact of such events. This ability to cushion shocks prevents abrupt changes in torque and rotational speed, reducing mechanical stress and potential damage to the equipment.
  • Speed Control: In certain applications, fluid couplings can facilitate speed control of the driven shaft by adjusting the amount of fluid in the coupling. The ability to control the speed of connected equipment without abrupt changes contributes to smoother operation and lower mechanical stress.

By incorporating a fluid coupling into a power transmission system, mechanical stress on connected equipment can be significantly reduced, leading to improved equipment reliability, extended component life, and reduced maintenance costs. Fluid couplings are commonly used in heavy machinery, conveyors, crushers, mining equipment, marine propulsion systems, and various other industrial applications where smooth and controlled power transmission is critical.

It is important to select the appropriate fluid coupling size, type, and features based on the specific application requirements to ensure optimal performance and stress reduction. Regular maintenance and adherence to the manufacturer’s guidelines are essential to preserve the benefits of using fluid couplings and maintain their effectiveness in reducing mechanical stress on connected equipment.

fluid coupling

Controlling Torque and Rotational Speed with Fluid Couplings

A fluid coupling plays a crucial role in controlling torque and rotational speed in power transmission systems. The principle behind its operation allows for smooth torque transmission while offering some level of speed control:

  • Torque Transmission: When power is applied to the input side (also known as the driving side) of the fluid coupling, the impeller starts to rotate and accelerates the transmission fluid inside the housing. The kinetic energy of the moving fluid creates a rotating flow pattern that transfers torque to the output side (also known as the driven side) of the coupling. This torque transfer enables the connected machinery or equipment to start smoothly without any shock loading.
  • Slip: In a fluid coupling, there is always a slight difference in speed between the input and output sides due to the viscous nature of the fluid. This speed difference is known as slip. The slip allows the fluid coupling to protect the connected components from sudden torque spikes and vibrations. If the output side experiences an abrupt load increase or jam, the slip absorbs the excess torque, preventing damage to the drivetrain.
  • Speed Control: While fluid couplings are not as efficient in speed control as variable-speed drives, they do offer some inherent speed control characteristics. The amount of slip in the fluid coupling affects the output speed relative to the input speed. By adjusting the fill level of the fluid coupling or using different fluid viscosities, it is possible to fine-tune the speed at which the output shaft rotates. However, it’s important to note that this speed control is limited compared to other speed control mechanisms.

Overall, fluid couplings provide a reliable and efficient means of controlling torque during power transmission. Their ability to dampen torsional vibrations and provide overload protection makes them suitable for various applications where smooth torque transfer and protection against shock loads are essential.

China factory Pneumatic Accessories Chs Ss Engineered Fluid Transfer Couplings  China factory Pneumatic Accessories Chs Ss Engineered Fluid Transfer Couplings
editor by CX 2024-02-01